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Abstract
The Hartree solution for the ground state of N � 1 bosons placed within a
spherical impenetrable shell is calculated. The bosons are assumed to interact
through Coulomb repulsive forces and therefore occupy a thin volume adjacent
to the shell wall. The resulting density profile is compared with its parallel
Thomas–Fermi solution for fermions.

PACS numbers: 0530J, 0365, 0375

1. Introduction

The ground state of an N -boson system may constitute a bound state provided the existing
forces are appropriate. Three examples of this type of system involving long-range interactions
are: (a) a self-gravitating boson cluster [1–4]; (b) a boson system with repulsive interparticle
forces but globally bound by a sufficiently strong long-range centre of attraction (in the case
that both repulsive and attractive effects are of the Coulomb type, this would correspond to a
bosonic atom [5]); and (c) if we consider that the inter-particle force is of Coulomb repulsive
type, but the system is placed within an impenetrable box that acts as an external binding agent.
This third scenario would correspond, for example, to a system of deuterons or alpha particles
confined, at zero temperature, within a spherical cavity, with the proviso that the mean inter-
particle distance resulting should be bigger than say, a few fermi, in order to avoid the short-
range effects of the nuclear forces. Physical situations of light atomic nuclei confined in a small
volume are frequent in nuclear-fusion physics experiments; there, however, the temperature
of the samples is considerably higher. It is known that a single-particle description forms
a good approximation for many quite distinct physical systems, especially if the interaction
potential is long range and extends far beyond the interparticle spacing. Therefore, for the three
mentioned boson systems an appropriate approach to computing the ground-state properties
is the self-consistent Hartree method.

These three mentioned boson systems have their corresponding fermion counterparts in:
(a) a white dwarf [6] or a neutron star [7]; (b) an ordinary atom [8]; and (c) the problem of
N electrons in a shell [9, 10]. The solution for the ground state of these fermionic systems
is readily provided by the semiclassical Thomas–Fermi model [8]. In (a), if the mass of the
system is very large, the solution demands the use of general relativity and thus we would have
to use the Oppenheimer–Volkoff equation [7].
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For the first and second above-mentioned boson systems, the explicit Hartree solutions
can be found in [3, 5]. In this paper we solve the third case, i.e. the ground state of N � 1
bosons located within a spherical impenetrable shell and interacting through Coulomb repulsive
forces. In the following sections, from time to time we will refer to the boson density profile
near the wall as the condensate or as the boundary layer distribution. The word condensate
in this context is, of course, reminiscent of the Bose–Einstein condensation phenomenon
[11]. This term is quite suitable because in our Hartree strategy, all the particles will occupy
the single-particle minimum-energy wavefunction. The reason for the words boundary-layer
distribution lies in the fact that the repulsive Coulomb force pushes the bosons against the wall
forming an almost plane particle profile. In section 2, the general Hartree equation for the 1s
single-particle wavefunction is presented. In section 3, the appropriate frame of reference and
the most suitable non-dimensional variables are chosen. In section 4, the so-called asymptotic
solution is calculated explicitly. In section 5, the two energy terms of the system are calculated.
Finally, in section 6 we compare these results with their fermionic counterparts and state our
conclusions.

2. Hartree equation

Suppose N identical bosons of mass m and charge −e are located within an impenetrable
spherical shell of radius a. N is assumed to be � 1. The Hamiltonian of this quantum-
mechanical system is

Ĥ = T̂ + V̂r (1)

T̂ = − h̄2

2m

N∑
i=1

�∇2
i (2)

V̂r = e2

2

N∑
i �=j=1

1

|�ri − �rj | (3)

where T̂ and V̂r , are the kinetic energy and potential energy operators, respectively. In these
formulae and in the following equations, the radial distances from the origin, r , are assumed
to be limited: r � a.

Let |ψ〉 be the ground-state wavefunction of Ĥ , and E its energy

E = 〈ψ |Ĥ |ψ〉. (4)

Likewise, we will denote by T and Vr the expectation values of the corresponding operators
T̂ and V̂r . As we are dealing with bosons, in the Hartree approximation:

|ψ〉 = |f 〉1|f 〉2 · · · |f 〉N (5)

where |f 〉 is the minimum-energy single-particle wavefunction, which corresponds to a 1s
state. In terms of f (r) which is a real function, the particle density, n(r), is given by

n(r) = Nf 2(r) (6)

and hence, f (r) = √
n(r)/N . Note that both f and n depend only on |�r| = r , i.e. on the

radial distance from the origin.
Using equations (5), (2) and (3), we obtain

T = − h̄2

2m
N

∫
d�r f (r) �∇2

r f (r) (7)

Vr = − e

2
N

∫
d�r f 2(r)φ(r) (8)
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with the electric potential, φ(r), given by

φ(r) = −eN

∫
d�r ′ f 2(r ′)

|�r − �r ′| . (9)

The calculation of f , from a variational perspective, can be expressed as the solution of

δ

(
T [f ] + Vr [f ] + λN

∫
d�r f 2(r)

)
= 0 (10)

with the constraint∫
d�r n(�r) = N

∫
d�r f 2(r) = N (11)

where λ is a Lagrange multiplier. Using equations (7), (8) and (10), we obtain[
− h̄2

2m
�∇2

r − eφ(r)

]
f (r) = ēf (r) (12)

with ē = −λ. Equation (12) is the eigenvalue equation of the single-particle Hamiltonian. As
usual, we will express f (r) = u(r)/r; in terms of u(r), equation (12) reads

− h̄2

2m
u′′(r) − eφ(r) u(r) = ēu(r) (13)

which is an integro-differential equation in the radial coordinate r . Here, a prime denotes
differentiation with respect to r . The function u(r) fulfils the boundary conditions

u(r = 0) = 0 (14a)

u(r = a) = 0. (14b)

From equation (13) we can obtain a pure differential equation in u(r). With this aim we
divide it by u(r) and then apply the Laplacian operator �∇2

r . As Poisson’s equation gives
�∇2

r φ(r) = 4πe2Nu2(r)/r2, we obtain(
− h̄2

2m

)
�∇2

r

(
u′′r)
u(r)

)
− 4πe2N

u2(r)

r2
= 0 (15)

which leads to

u′′′′ = −2

r

{
u′′′ − u′′u′

u

}
+ 2

u′′′u′

u
+

u′′2

u
− 2

u′′u′2

u2
− 8π

e2Nm

h̄2

u3

r2
(16)

which is a fourth-order differential equation. We must be aware that, having performed two
additional differentiations to pass from equation (13) to (16), some information has been lost;
we will discuss this point later.

Now it is convenient to define the following dimensionless variables, x and ũ:

r = bx (17a)

u = ũ/(4πb)1/2 (17b)

b = h̄2

2me2N
= aB

2N
(17c)

where aB is the Bohr radius. In terms of these variables, equation (16) reads

˙̇˙̃̇u = − 2

x

{
˙̇˙̃u −

¨̃u ˙̃u

ũ

}
+ 2

˙̇˙̃u ˙̃u

ũ
+

¨̃u2

ũ
− 2

¨̃u ˙̃u2

ũ2
− ũ3

x2
(18)
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where a dot on a function represents differentiation with respect to x. The distance a expressed
in terms of b is a = xab. As in this problem we assume N � 1, b is a very small distance when
compared with aB , and hence xa is a non-dimensional large number. The fact that xa � 1,
will be exploited in the next sections. Previously defined magnitudes in their non-dimensional
form are expressed by∫ xa

0
dx ũ2(x) = 1 (19)

n(r) = N

4πb3
ñ(x) (20a)

ñ(x) = ũ2(x)/x2 (20b)

¨̃u(x)

ũ(x)
+ φ̃(x) = −ε̃ (21)

ε̃ = 2m

h̄2 b2ē (22)

φ(r) = eN

b
φ̃(x) (23)

φ̃(x) = − 1

4π

∫
d�x ′ ũ2(x ′)

x ′2|�x − �x ′| . (24)

The two boundary conditions, equation (14), expressed in the new variables, adopt the form

ũ(x = 0) = 0 (25a)

ũ(x = xa) = 0. (25b)

Due to equation (25b), the solution of equation (18) is not universal, in the sense that it depends
on N and a through the number xa .

3. Change of the system of reference and asymptotic regime

Due to the electric repulsion between the particles, we expect that the boson condensate will
pile in a thin volume near the wall. For this reason it is natural to move the system of reference,
so far at r = 0, to r = a. Thus, in dimensionless notation, we define the radial distance y as

y = xa − x. (26)

In terms of y, equation (18) adopts the form

˙̇˙̃̇u(y) = 2

xa(1 − y/xa)

{
˙̇˙̃u(y) −

¨̃u(y) ˙̃u(y)

ũ(y)

}

+2
˙̇˙̃u(y) ˙̃u(y)

ũ(y)
+

¨̃u2(y)

ũ(y)
− 2

¨̃u(y) ˙̃u2(y)

ũ2(y)
− ũ3(y)

x2
a (1 − y/xa)2

(27)

and equations (19)–(21) and equations (23), (24) become∫ xa

0
dy ũ2(y) = 1 (28)

n(r) = N

4πb3
ñ(y) (29)
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ñ(y) = ũ2(y)

x2
a (1 − y/xa)2

(30)

¨̃u(y)

ũ(y)
+ φ̃(y) = −ε̃ (31)

φ(r) = eN

b
φ̃(y) (32)

φ̃(y) = − 1

4π

∫
d�x ′ ũ2(x ′)

x ′2|�xa − �y − �x ′| (33)

and the boundary conditions, equation (25), are now:

ũ(y = xa) = 0 (34a)

ũ(y = 0) = 0. (34b)

Now, we define ‘the asymptotic regime’, as the limit of xa → ∞. The exploitation of
this limit leads to a simplification of the previous equations and, more importantly for us, to a
universal solution. With this aim, let us perform the scale change

ũ(y) = û(z)

x
1/3
a

(35)

y = x2/3
a z. (36)

From now on, we will use the z variable. This is the distance to the wall expressed in d units,

zd = a − r (37a)

d = bx2/3
a = a2/3b1/3 = 2−1/3a2/3a

1/3
B N−1/3. (37b)

Using these new variables, equation (27) converts into

˙̇˙̂̇u(z) = 2

x
1/3
a (1 − z/x

1/3
a )

{
˙̇˙̂u(z) −

¨̂u(z) ˙̂u(z)

û(z)

}

+2
˙̇˙̂u(z) ˙̂u(z)

û(z)
+

¨̂u2(z)

û(z)
− 2

¨̂u(z) ˙̂u2(z)

û2(z)
− û3(z)

(1 − z/x
1/3
a )2

(38)

and similarly, we obtain∫ x
1/3
a

0
dz û2(z) = 1 (39)

ñ(y) = 1

x
8/3
a

n̂(z) (40)

n̂(z) = û2(z)/(1 − z/x1/3
a )2 (41)

¨̂u(z)

x
4/3
a û(z)

+ φ̃(z) = −ε̃ (42)

φ̃(z) = − 1

xa

{ ∫ z

0
dz′ û2(z′)

(1 − z′/x1/3
a )

+
1

(1 − z/x
1/3
a )

∫ x
1/3
a

z

dz′ û2(z′)
}

(43)

û(z = x1/3
a ) = 0 (44a)

û(z = 0) = 0. (44b)
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In the limit xa → ∞ we consider a development of the type

û(z) = û0(z) + εû1(z) + ε2û2(z) + · · · (45a)

where

ε = 1/x1/3
a (45b)

acts as a small parameter. Inserting equation (45a) into (38), in the leading order in ε, we
obtain

˙̇˙̂̇u0(z) = 2
˙̇˙̂u0(z)

˙̂u0(z)

û0(z)
+

¨̂u0
2(z)

û0(z)
− 2

¨̂u0(z)
˙̂u0

2(z)

û2
0(z)

− û3
0(z). (46)

The asymptotic function û0(z) fulfils the two conditions

û0(z = ∞) = 0 (47a)

û0(z = 0) = 0 (47b)

and verifies ∫ ∞

0
dz û2

0(z) = 1. (48)

Note that in this leading order in ε, the limit of integration is no longer x
1/3
a but ∞.

In this asymptotic limit, the previously defined magnitudes adopt the form

n̂(z) = n̂0(z) + · · · = û2
0(z) + · · · (49)

φ̃(z) = − 1

xa

+
φ̂(z)

x
4/3
a

(50)

φ̂(z) = −
∫ z

0
dz′ z′û2(z′) − z

∫ x
1/3
a

z

dz′ û2(z′) + · · · (51)

¨̂u(z)

û(z)
+ φ̂(z) = −ε̂ (52)

ε̃ = 1

xa

+
ε̂

x
4/3
a

(53)

φ̂(z) = φ̂0(z) + · · · (54)

φ̂0(z) = −
∫ z

0
dz′ z′û2

0(z
′) − z

∫ ∞

z

dz′ û2
0(z

′) (55)

ε̂ = ε̂0 + · · · (56)

¨̂u0(z)

û0(z)
+ φ̂0(z) = −ε̂0. (57)

It is worth emphasizing that the double differentiation of equation (57) reproduces
equation (46). These two equations and their solution û0(z) are universal: they do not depend
on xa . We will see later that for z � 1, û0(z) is exponentially decreasing to zero. This implies
that, in our asymptotic approximation, to substitute x

1/3
a by ∞ is almost exact.
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4. Asymptotic solution

In order to find a solution of û0(z) by means of the Runge–Kutta method, we analyse its
behaviour for small z, û0(z) = ∑

n anz
n. To apply this method we have to provide a0, a1, a2

and a3. From equation (47b), a0 = 0, and from equation (57), a2 = 0. Hence, our task
will be to find a1 and a3 such that û0(z) has no node (1s) and is normalized according to
equation (48). Furthermore, from equation (57) as φ̂0(z = 0) = 0, we have ε̂0 = −6a3/a1,
which means that taking a1 > 0 implies a3 < 0. In summary, we must solve equation (46),
with a0 = 0, a1 > 0, a2 = 0 and a3 < 0.

It is interesting to note that in equation (46), a4 is undetermined; this is easily checked by
performing the algebraic development of û0(z) around z = 0. However, using equation (57)
we easily conclude that a4 = 1

12a1. Using this relation between the coefficients, the numerical
integration of equation (46) is straightforward. The ‘undetermined’ behaviour of equation (46)
with respect to a4 is related to the loss of information produced when the �∇2

r operator was
applied to equation (13), to obtain a pure differential equation of fourth order.

The Runge–Kutta numerical solution, fulfilling the above-mentioned conditions, leads to

a1 = 0.7132

a3 = −0.2387.
(58)

The function û0(z) is plotted in figure 1. Using equation (57), we obtain

ε̂0 = 2.008. (59)

Let us now perform an analytical study of how û0(z) decays for large z. First, one can
easily see that a behaviour of the type û0(z) = c1/(c2 + z)n, c1 and c2 constant, does not fulfil
equation (46). However, a solution of the type

û0(z) = Ae−cz + Be−3cz + · · · (60)

Figure 1. Plot of û0(z) versus z.
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with A, B and c constants, does fulfil equations (46) and (57) with B = A3/32c4. This result
sheds light on the numerical fall off of û0(z) for z → ∞, exhibited in figure 1.

5. Energy results

The kinetic energy T is obtained from equation (7)

T = N2e2

b
t̃ (61)

with

t̃ = −
∫ xa

0
dy ũ(y) ¨̃u(y). (62)

In terms of the û and z variables, we have

t̃ = t̂

x
4/3
a

= − 1

x
4/3
a

∫ x
1/3
a

0
dz û(z) ¨̂u(z)

∼= − 1

x
4/3
a

∫ ∞

0
dz û0(z)

¨̂u0(z) = 1

x
4/3
a

(0.4055). (63)

The potential energy, Vr , is

Vr = −N2e2

2b
ṽ (64)

with

ṽ =
∫ xa

0
dy ũ2(y) φ̃(y) = − 1

xa

− v̂

x
4/3
a

= − 1

xa

+
1

x
4/3
a

∫ x
1/3
a

0
dz û2(z) φ̂(z)

∼= − 1

xa

+
1

x
4/3
a

∫ ∞

0
dz û2

0(z) φ̂0(z) = − 1

xa

− (1.6025)

x
4/3
a

. (65)

In equations (63) and (65) the numbers within parentheses are obtained by numerical integration
of û0(z). Thus, T and Vr are given by

T = N2e2

b

(0.4055)

x
4/3
a

(66)

Vr = N2e2

2b

[
1

xa

+
(1.6025)

x
4/3
a

]
(67)

or in terms of the small parameter ε:

T = N2e2

a
(0.4055)ε (68)

Vr = N2e2

2a
[1 + (1.6025)ε]. (69)

Thus, the total energy of the system, E, amounts to

E = T + Vr = N2e2

2a
[1 + (0.8110 + 1.6025)ε] = N2e2

2a
[1 + (2.413)ε]. (70)
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6. Comparison with fermions and conclusions

In this paper, we have analysed the structure of a boson system in a spherical impenetrable
shell, interacting through repulsive Coulomb forces, at zero temperature. This analysis has
been done within the Hartree approximation and the asymptotic limit, xa → ∞.

It is instructive to compare the results obtained for bosons with those resulting for fermions.
We compare the two cases assuming the same number of particles, N , with identical mass and
charge, m and −e, and the same shell radius, a. The scale length, b, for bosons and fermions,
is

b = 1

2

aB

N
(71a)

bF = κ
aB

N1/3
(71b)

respectively, with κ = (3π)2/3/27/3. Note that b/bF ≈ N−2/3. Consequently,

xa = a

b
= 2N

a

aB

(72a)

and

xa,F = a

bF

= 1

κ
N1/3 a

aB

. (72b)

And the small parameter, ε, is

ε = 1

x
1/3
a

=
(

aB

2a

)1/3 1

N1/3
(73a)

and

εF = 1

x
3/5
a,F

=
(

κaB

a

)3/5 1

N1/5
. (73b)

With respect to the characteristic thickness of the boundary layer near the shell, we have

d = bx2/3
a = 2−1/3a2/3a

1/3
B N−1/3 = aε (74a)

and

dF = κ3/5a2/5a
3/5
B N−1/5 = aεF . (74b)

With respect to the particle distribution in the boson case, the density at the wall is zero,
it grows to a maximum and then falls exponentially to zero (see figure 1). In the fermion case,
the particle density behaves as

n ∝ 1

(q0 + z)6
(75)

where q0 is a constant and z is the distance to the wall expressed in dF units.
Finally, with respect to the energy of the system up to the first-order term in ε, we have

Vr = N2e2

2a
[1 + 1.6025ε] (76a)

Vr,F = N2e2

2a
[1 + 0.4859εF ] (76b)
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and

T = N2e2

a
(0.4055)ε (77a)

TF = D

κ3/5

N2e2

a
εF (77b)

with D = 1
24 (60π)2/5. Hence

E

EF

= 1 + 2.413ε

1 + (0.4859 + 2D/κ3/5)εF

∼= 1 − 1.215εF + 2.413ε

∼= 1 − 1.215εF . (78)

As a conclusion, we would say that the Bose condensate occupies a thinner volume than
the fermion boundary layer, and decreases in an exponential form as a function of the distance
to the wall. In the two cases, at zero order in ε, the energy is equal and corresponds to the
classical repulsive energy of a superficial layer adjacent to the wall of the shell. In the first
order in ε, however, the energy of the fermions is higher than that of the bosons.
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